The collapsible pseudo-spine representation theorem
نویسندگان
چکیده
منابع مشابه
A Pseudo Representation Theorem for Various Categories of Relations
It is well-known that, given a Dedekind categoryR the category of (typed) matrices with coefficients from R is a Dedekind category with arbitrary relational sums. In this paper we show that under slightly stronger assumptions the converse is also true. Every atomic Dedekind category R with relational sums and subobjects is equivalent to a category of matrices over a suitable basis. This basis i...
متن کاملKnots in Collapsible and Non-Collapsible Balls
We construct the first explicit example of a simplicial 3-ball B15,66 that is not collapsible. It has only 15 vertices. We exhibit a second 3-ball B12,38 with 12 vertices that is collapsible and not shellable, but evasive. Finally, we present the first explicit triangulation of a 3-sphere S18,125 (with only 18 vertices) that is not locally constructible. All these examples are based on knotted ...
متن کاملRepresentation Theorem for Stacks
In this paper i is a natural number and x is a set. Let A be a set and let s1, s2 be finite sequences of elements of A. Then s1s2 is an element of A∗. Let A be a set, let i be a natural number, and let s be a finite sequence of elements of A. Then s i is an element of A∗. The following two propositions are true: (1) ∅ i = ∅. (2) Let D be a non empty set and s be a finite sequence of elements of...
متن کاملHyperseparoids: A Representation Theorem
In this note, hyperseparoids are introduced; hyperseparoids are to separoids as Tverberg’s theorem is to Radon’s theorem. Also, a geometric representation theorem for acyclic kseparoids is presented which generalises that for separoids exhibited in [2].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology
سال: 1992
ISSN: 0040-9383
DOI: 10.1016/0040-9383(92)90055-m